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A B S T R A C T

Background: The reuse of data from electronic health records (EHRs) for research purposes promises to
improve the data foundation for clinical trials and may even support to enable them. Nevertheless, EHRs
are characterized by both, heterogeneous structure and semantics. To standardize this data for research, the
Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) standard has recently seen
an increase in use. However, the conversion of these EHRs into the OMOP CDM requires complex and resource
intensive Extract Transform and Load (ETL) processes. This hampers the reuse of clinical data for research.
To solve the issues of heterogeneity of EHRs and the lack of semantic precision on the care site, the openEHR
standard has recently seen wider adoption. A standardized process to integrate openEHR records into the CDM
potentially lowers the barriers of making EHRs accessible for research. Yet, a comprehensive approach about
the integration of openEHR records into the OMOP CDM has not yet been made.
Methods: We analyzed both standards and compared their models to identify possible mappings. Based on
this, we defined the necessary processes to transform openEHR records into CDM tables. We also discuss the
limitation of openEHR with its unspecific demographics model and propose two possible solutions.
Results: We developed the OMOP Conversion Language (OMOCL) which enabled us to define a declarative
openEHR archetype-to-CDM mapping language. Using OMOCL, it was possible to define a set of mappings. As
a proof-of-concept, we implemented the Eos tool, which uses the OMOCL-files to successfully automatize the
ETL from real-world and sample EHRs into the OMOP CDM.
Discussion: Both Eos and OMOCL provide a way to define generic mappings for an integration of openEHR
records into OMOP. Thus, it represents a significant step towards achieving interoperability between the clinical
and the research data domains. However, the transformation of openEHR data into the less expressive OMOP
CDM leads to a loss of semantics.

1. Introduction

An ever growing number of electronically available health data is
captured every day as part of the clinical routine. Its reuse for research
is vital in order to improve and enable research itself [1–3]. On the
other hand, the lack of this data has major downsides [4] and lead to
spurious research findings early into the COVID-19 pandemic [5]. One
pivotal cause for this gap between the care and research domain is poor
interoperability of health application systems [6,7]. In order to use data
from an electronic health record (EHR) for clinical research, informa-
tion has to be integrated from different sources and systems [8]. To
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do so, semantic interoperability is needed. Contrary to this, nowadays
EHRs are characterized by a heterogeneous structure and semantics of
clinical records [7–9]. As a consequence, integration processes required
are time and resource intensive [10].

1.1. Clinical Information Models (CIM) and their use

Over the past two decades, health informatics research has put a
lot of emphasis on developing methods to harmonize heterogeneous
EHRs [7,11]. A part of this process resulted in the definition and
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adaptation of Clinical Information Models (CIMs). CIMs are used to
describe standardized clinical data elements including the relations
among them. These models are then used to exchange computable
clinical content. This enables an unambiguous interpretation of the data
by each system [11,12] as universally demanded by the FAIR criteria
for data management [13], thus making the information ‘machine-
actionable’. Currently adapted are the HL7 Fast Healthcare Interop-
erability Resources (FHIR) [14], openEHR [15] and the HL7 Clinical
Document Architecture (CDA) [16].

Nevertheless, how much of the EHR and which CIM is used varies
between institutions. As an example, in the Nordics the EHR market
leaders chose openEHR as their CIM [17], and China decided in 2017 to
standardize the national military EHR using openEHR [18]. It has affili-
ates in seven different languages and key public and industrial partners
including the Catalan Health Service, the Norwegian Public Hospitals
and Microsoft [19]. On the other hand, FHIR is used to exchange
information between institutions of the Medical Informatics Initiative
Germany [20–22] and widely used across the United States [23]. The
scope of EHR projects is – at best – to enable semantic interoperability
on a national level. Clinical research on the other hand often requires
the integration of data on an international scale. This is especially true
in the times of the global corona virus pandemic. The adaptation of
CIM significantly eases the process of integrating EHRs for research, by
enabling standardized integration processes. Nevertheless, it does not
make this process obsolete, unless every stakeholder of a project agrees
in using the same CIM.

1.2. Data models for clinical data reuse

One established approach to solve the above-mentioned issues for
the reuse of clinical data, is the use of a Common Data Model (CDM).
These models are used to ease the integration of health data from
heterogeneous sources and enable their systematic analysis [24,25]. A
prominent example of this is the Observational Medical Outcomes Part-
nership (OMOP) CDM which is maintained by the Observational Health
Data Science and Informatics (OHDSI) community [26]. The data from
disparate sources is transformed into this OMOP CDM and annotated
using terminologies and coding schemes. Researchers can then perform
systematic analyses with a set of standardized analytic routines and
tools defined for the CDM [25]. Otherwise these large amounts of
analytical methods would need to be developed and performed on each
proprietary data model and CIM relevant to the research project [27].
In addition, this enables distributed analysis across different systems.
Users can process this locally and return the outcomes, without the
need of sharing the source data. Nevertheless, if required the data
can also be shared easily since it is based on the same model. As of
August 2019, the OMOP CDM is already used in over 100 healthcare
databases from over 20 countries, capturing more than one billion
patient records [25]. With the outbreak of the corona virus disease in
2019, the necessity of shared data collaboration became even more
important. One such a collaboration is the National COVID Cohort
Collaborative (N3C). Its goal is to integrate EHR data in the United
States to enable its secondary use for corona research. A key part of its
architecture is the OMOP CDM [28,29].

Another approach to make clinical data accessible for secondary use
is the open source clinical data warehouse Informatics for Integrating
Biology and the Bedside (i2b2). Instead of defining a common data
model, the approach provides an entire software stack to users. Clinical
data is populated into this data warehouse and can then be analyzed
using i2b2’s analytics tooling. Hereby, i2b2 offers a flexible star model
of five tables to persist the data [30]. There are two major differences
in the data model compared to OMOP. First, terminologies are stan-
dardized and harmonized in OMOP. Meanwhile, in i2b2 terminologies
or even local codes can be loaded as so called catalogs. These are
not standardized or harmonized. Secondly, OMOP has different clinical
data types, e.g. measurement, device exposure, drug exposure etc.

which are used to categorize data. I2b2 on the other hand has only
an observation fact table used to represent all types of information.
As a result, i2b2 offers more flexibility than OMOP, but at the cost of
semantics and non-standardized terminologies.

1.3. Integrating data for clinical research

To transmit data from source systems into e.g. an OMOP CDM repos-
itory, the data has to be Extracted, Transformed and Loaded (ETL). ETL
processes are complex and resource intensive [10]. This is especially
true for systems that have a heterogeneous data representation like
most of the EHRs. For each data model in use an ETL process needs to
be defined, this includes mapping the data into the target data model.
If source systems use a CIM, this process can be simplified. On the
basis of the CIM, a standardized and automatized ETL process can be
defined. As an example Haarbrandt et al. [31] defined an automatic
ETL tool for integrating openEHR records into the i2b2 data warehouse.
Furthermore, publications already covered the ETL process from FHIR
into the OMOP CDM [29,32] and an OMOP-on-FHIR [33] ETL tool is
accessible. Nevertheless, for the integration of openEHR records into
the OMOP CDM there is currently neither a tool, nor a comprehensive
investigation about its feasibility. The publication of Li et al. [34]
promises that an integration of openEHR and OMOP improves the reuse
of clinical data. However, it does not define an approach to do so. A
first step in this direction was made by Rinaldi et al. [32]. A single
openEHR model for microbiology findings was mapped to FHIR and
OMOP. As stated in the paper itself, the data set used is very limited,
allowing for no comprehensive review on the integration of openEHR
records into the OMOP CDM. Furthermore, no standardized process or
ETL tool was defined.

1.4. Objectives

The main goal of this work is to devise a comprehensive ap-
proach, theoretically and practically, on integrating openEHR records
into the OMOP CDM. The development of such an approach would
make openEHR records more easily accessible for secondary use. This
improves the interoperability between the clinical and research data
domains.

2. Material and methods

2.1. OpenEHR

The openEHR specification defines an interoperable architecture
where all health information is represented based on the information
model of openEHR. One of the key paradigms of openEHR is the multi-
level modeling approach [35]. This requires three levels of models,
starting with the Reference Model (RM). The RM defines the basic logi-
cal structure of EHR and demographics. This includes simple definitions
for how data values are represented or more complex ones like the
structure of clinical observations [36].

The second level of models uses these RM classes to specify re-usable
clinical content models, the archetypes. These are detailed data models
used to describe a maximum set of information about a clinical concept,
e.g. blood pressure or heart rate. The data points of these concepts are
organized using so called nodes. Each archetype is identified using a
unique Archetype ID [36,37].

Archetypes cover a maximum set of information, often containing
too much for specific use cases. In order to allow context-specific data
sets, templates are used. Templates are the third level of models, they
re-use archetypes as building blocks. While doing so, the nodes of an
archetype can be limited and specialized in order to fit the specific
scope. Each node within an archetype is identified with an archetype
node identifier. When embedded in a template, these identifiers are pre-
served along with the archetype ID and used to construct paths. Paths
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Table 1
Mapping from the international archetype openEHR-EHR-EVALUATION.problem_diagnosis.v1 [41] into the CDM CDT
Condition_Occurrence [42].
Node name Node path CDM Field

Problem/Diagnose name data[at0001]/items[at0002] condition_concept_id
Date/time of onset data[at0001]/items[at0077] condition_start_date
Date/time of resolution data[at0001]/items[at0030] condition_end_date

are used to retrieve data from archetype nodes within templates [36].
Template models can be defined as part of local solutions or even as
standardized ones for a country.

OpenEHR systems are built using these templates. They define the
structure and constraints of compositions. Compositions are used to
capture clinical data in openEHR. Each composition is based on one
template. Software solutions implement the RM and are by that enabled
to process templates etc. as software objects. In order to exchange
or persist templates and compositions, a serialization is required. For
that, openEHR defines standardized schemes for the Extensible Markup
Language (XML) [38] and the JavaScript Object Notation (JSON) [39].

Besides the use of a common information model, medical termi-
nologies also play an important role for semantic interoperability [40].
OpenEHR allows binding of such terminologies (e.g., SNOMED CT,
LOINC) to archetype elements. Apart from this, openEHR also has its
own small set of terminologies to provide some value sets for a number
of attributes. Users can also define their own set of internal codings if
necessary [36].

2.2. Observational medical outcomes partnership (OMOP) common data
model (CDM)

The OMOP CDM defines a data model used to implement stan-
dardized research repositories for clinical data. Data is transferred
into the CDM from the source systems and harmonized using stan-
dardized vocabularies. These contain records, so called concepts, that
uniquely identify and express clinical information within OMOP. These
concepts are described using codes from terminologies and associated
descriptions [25]. For each terminology used in OMOP, there is one
vocabulary and for each code there is a concept. Nevertheless, the
meaning expressed by codes is often duplicated throughout different
terminologies. To solve this, OMOP defines a set of concepts as standard
for each Domain (e.g. Drug Exposure, Measurement). Mappings from
non-standardized concepts to standardized concepts and vice versa are
contained as part of the vocabularies. This harmonizes codes from
different terminologies and eases analytical processes [25].

These concepts are referenced in the OMOP tables. The CDM con-
sists of a set of tables with fields defined by OHDSI. These tables and
rows are maintained by OHDSI as part of CDM versions. Clinical data
in OMOP is represented by the Clinical Data Tables (CDT). Here, the
concepts are used to unambiguously define which clinical information
is represented by an instance. This is done by referencing the concept
via a concept identifier specified by OHDSI.

2.3. Mapping the models

In order to define mappings, both data models need to be analyzed
and possible mappings identified. The OMOP CDM defines a set of static
data tables for different clinical models. Each of these tables has a
set of fields. On the other hand, openEHR represents clinical models
as archetypes. Archetypes have nodes used to express the different
sets of information. As a result, first archetypes and CDM tables have
to be mapped. Afterwards, the nodes need to be matched to their
corresponding CDM fields. An example of such a mapping is illustrated
in Table 1.

OpenEHR and the CDM both support different data types which
need to be mapped. Most of these transformations do not require
complex processes. An exception is the transformation of openEHR

coded text to OMOP concepts. In openEHR, a value coded with a
terminology contains the code itself and a terminology ID. In OMOP
each code of a terminology is a specific concept identified by a unique
ID. CDM fields use these IDs to reference codes. Therefore, the openEHR
coded texts have to be transformed into concept, which can then be
used to populate the CDM field. This is done by using the code and
terminology ID of the coded text to identify the concept in OMOP. An
example transformation of such a coded text, contained in the first node
path of Table 1, is illustrated in Fig. 1.

Nonetheless, the CDM often requires additional information for the
table, that derives from the context of the archetype and not from
the data contained in the nodes. As an example, some CDT tables
have a type concept field. This field contains the information from
which source system type the data originated. In case of records from
openEHR, this is an EHR system. As a result, the OMOP concept ID
for EHR has to be provided to the transformation in addition to the
archetype nodes.

To search such a concept ID and download vocabularies, OHDSI
provides the ATHENA tool [43]. This tool was used for the research
work described in this paper to determine required concept IDs for
the mappings and to download the vocabularies. For the openEHR
archetypes, the Clinical Knowledge Manager (CKM) [41] was used to
search and download archetypes. The CKM also provides a visualization
of the node paths of an archetype which was used to determine the node
paths for the mappings.

A more fundamental difference than the type concept mapping is
how a patient is represented and identified in both standards. The CDM
has a person table that is used to store demographic data like age,
gender etc. and a unique identifier. In openEHR, records are linked to
an EHR object by referencing its identifier. Therefore, for each person
ID there needs to be a related EHR ID. Meanwhile, for demographic
data, openEHR does not impose a specific way to represent it. This data
can be stored as part of compositions or in an external demographics
server. In case of patient data being provided in compositions, this data
can be transformed by mapping nodes to fields.

To define and develop the mappings and software of this paper,
agile methods were used. Agile methodology is a project manage-
ment approach that emphasizes flexibility and adaptability to changing
requirements. It involves iterative and incremental development, con-
tinuous feedback, and close collaboration between the developers and
stakeholders. To manage the resulting code and mappings, GitHub
was used. GitHub is a platform for collaborative software develop-
ment, code management, version control, project collaboration, and
documentation [44].

3. Results

A software solution, hereinafter referred to as Eos, has been imple-
mented to provide configurable openEHR to CDM transformations. The
components are illustrated in Fig. 2. Eos is connected to an openEHR
data repository from which it loads the records. The mappings are con-
figured in OMOP Conversion Language (OMOCL) files that are loaded
by Eos. Using these configured mappings the records are transformed
by the tool into OMOP CDM entities. Here, Eos uses the standardized
methods by openEHR and OMOP to communicate with both com-
ponents. The tool itself is an application server with an Application
Programming Interface (API). Using this API, either the process to
integrate all EHRs or just a specific set can be triggered. After each
composition, Eos populates the transformed entities into the OMOP
CDM. Both tools are developed for the latest official version 5.4 of the
OMOP CDM and are not compatible with other versions.
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Fig. 1. Transformation of an archetype node into a CDM table field. (1) Snippet of an openEHR composition containing a DV_Coded_Text serialized as JSON. (2) vocabulary entry
of the corresponding OMOP concept, displayed using the OHDSI Athena tool [43]. (3) Illustration of the CDM table Condition_Occurrence. (A) The terminology in openEHR that
is mapped to the vocabulary ID in OMOP. (B) The code_string that is mapped to the concept code in OMOP. (C) The concept ID that uniquely identifies the concept in OMOP.
This value is provided to the CDM table field as a result of the transformation.

Fig. 2. Eos component diagram.

3.1. OMOP conversion language (OMOCL) and Eos

OMOCL is a Domain Specific Language (DSL) that was imple-
mented to configure mappings from openEHR into OMOP and pro-
vide a flexible and easy-to-use solution. The mappings are based
on archetypes. This could also be done for templates, yet these are
project-specific and therefore less generic. Users would be required to
define a configuration for each template. In contrast, archetypes are
reused throughout different projects internationally. As a result, the
information contained in the archetypes is transformable, no matter
which templates they are used in. OMOCL and the mappings done
were a collaborative effort with both openEHR experts and the help
of certified OMOP professionals. Both the definition of the language
and the mappings were done as part of an agile process. Resulting
archetype mappings were managed using a git repository, OMCOL is
open source and accessible via GitHub.1 In the repository, mappings
are classified by their domain (medical data/personal data) and by

1 https://github.com/SevKohler/OMOCL

RM class. The DSL is based on YAML, which ‘‘is a data serializa-
tion language designed to be human-friendly and work well with
modern programming languages’’ [45]. This has the advantage that
users do not have to learn an entire new language in order to write
mappings. An example of the OMOCL configuration of the openEHR-
EHR-EVALUATION.problem_diagnosis.v1 archetype is shown in Fig. 3.
A railroad diagram of the syntax can be found in Appendix A.

The first line defines the archetype that is to be mapped. Afterwards,
a listing of mappings is declared, starting with the type that defines
which CDM table is populated. In case of the example, it is only one
table, the Condition_Occurrence. If multiple tables are mapped, these
are defined one after another. Afterwards, the different node/concept
to field mappings are declared. Here, keywords are used for multiple
transformations. As an example, the concept_id key is used to trans-
form not only the Condition_Occurrence field condition_concept_id, but
also the condition_source_concept_id and condition_source_value. All
of which are always mapped from the same node or concept code.
The same keyword syntax is used in OMOCL for all other concept_id
mappings with source_concept and/or source_value. The nodes and
concepts for the transformation are listed under the key alternatives.
These are treated as a logical OR.

Nodes are referenced using the key path, concept codes with code.
In the example, the key condition_start_date contains two node paths. If
the node data[at0001]/items[at0077] is not present in the composition,
the next entry is processed. This entry contains the value ‘‘../context’’,
an OMOCL specific node path syntax. All node paths in OMOCL are
relative to the archetype entry. Sometimes it is necessary to access the
parent of the archetype entry. This can be done using two dots. In
the case of the example, the parent nodes context element can contain
several standardized fields, specified by the reference model, including
a start time. Since the required CDM field is a start_date and the context
contains a start time, OMOCL resolves this without requiring additional
syntax. In addition, the OMOCL language also includes the following
keywords:

• optional: sets transformations optional
• Include: reference other OMOCL archetype mappings
• base_path: iterates openEHR lists
• multiplicate: multiplicate values

OMOCL also provides the means to include custom mappings,
e.g. programmed ones, if the syntax of OMOCL is not sufficient enough.

https://github.com/SevKohler/OMOCL


Journal of Biomedical Informatics 144 (2023) 104437

5

S. Kohler et al.

Fig. 3. Snippet of the OMOCL mapping configuration for the international archetype openEHR-EHR-EVALUATION.problem_diagnosis.v1. The original configuration can be found
in Appendix B Fig. B.6.

Another feature of OMOCL is that fields like the type concept, which
always contains the same value as explained above, do not need to be
configured and can be inferred by the tool processing them.

The Eos tool contains an engine to load these OMOCL files and
execute the transformations based on them, as shown in Fig. 2. Eos was
developed as part of the same agile processes as OMOCL. The software
was implemented based on the requirement of executing OMOCL-
files and therefore, the corresponding need of conformance to both
openEHR and the CDM. Hereby, Eos and supports the entire grammar
of OMOCL. Apart from that, other features were implemented, e.g. au-
tomatic transformation of data types and non-standard to standard
concepts or tooling support for the programming of custom mappings.
Eos is a Java application server, the implementation logic is split into
two main components. The first one is responsible for loading the
OMOCL-files and interpreting their grammar. The second part is respon-
sible for the execution of the transformation based on the processed
OMOCL-files. The tool is available as free-to-use and open-source on
GitHub.2

3.2. Evaluation

As a proof-of-concept, the openEHR archetypes of different projects
including the German Corona Consensus Dataset (GECCO) [46,47]
were mapped from openEHR to OMOP. The GECCO data-set is used
in the COVID-19 Research Network of University Medicine (NUM)
in Germany [48]. In this network, 36 university hospitals forward
their GECCO data to a central openEHR platform accessible for re-
searchers. One archetype was not included since it represents imaging
data. OMOP requires a specific extension to support this data. These
extensions are not part of the standard CDM and are therefore open
for future discussion. The resulting mappings are shown in Table 2. In
addition, all OMOCL files can be found in Appendix B.

Nearly all of these archetypes from the projects are international
ones. The resulting OMOCL configurations cover already 10.5% of the
published3 archetypes contained in the international library. Therefore,
these mappings are not only valid for the GECCO data-set, but for all
templates using these archetypes. Here, some specific archetypes are
more commonly used than others, marking their importance. As an
example, the problem_diagnosis archetype is used in 88 templates from

2 https://github.com/SevKohler/Eos
3 The website contains different stages for the maturity of archetypes. The

most stable one is the published status.

the international [41] and German CKM [47] (as of 9.9.2022). Other
notable mappings are the laboratory_test_result.v1, medication.v1 and
procedure.v1. Each of these clinical models are relevant for most of the
healthcare domains. Therefore, the mapping includes some of the most
frequently used archetypes in openEHR. The transformed archetypes
also cover most of the data required for patient summaries [49].

These configurations were used by the Eos Tool to integrate openEHR
sample data into an OMOP CDM. In order to do so, Eos was pro-
grammed to process different types of CDT tables using OMOCL or to
automatically generate them. As a result, thirteen of the fifteen CDT
and Standardized Derived Elements (SDE) tables are supported for the
transformation. SDE tables are used to represent eras and episodes
of the patient care. These are illustrated in Table 3. All openEHR
archetypes were successfully extracted, transformed and loaded into
the OMOP CDM using Eos. This included the GECCO test data that was
used to test the central openEHR platform containing inpatient patient
summary data. Another transformed data-set was real-world inpatient
data containing physical examinations of 24 patients. On top of that,
sample data was generated from different CKM templates to cover a
wider variety of data, including e.g. a template based on the nationwide
medication plan standard of Germany. Therefore, the tool provides the
means for users to automatically populate openEHR records into the
OMOP CDM. Hereby, it supports 80% of the existing CDT and 100%
of the SDE tables. Some of the tables are generated automatically by
Eos, either by implemented logic or through the use of standardized
SQL scripts [42] and the database agnostic SqlRender [50] provided
by OHDSI.

SDE tables are used to represent time intervals of the data stored
in the CDT tables. An example is the time frame in which a specific
drug was given to a person (Drug era). The fields of these tables derive
from the data contained in other CDM tables. Therefore, they cannot
be mapped using archetypes and rather need to be generated by Eos. In
the case of the person table, both methods are provided. If this data is
stored in the compositions, OMOCL can be used. If the master patient
data is stored in an external server, Eos will still generate persons for
each EHR, but these do not contain any data. When a project requires
the demographic data from the external server, users can develop their
own ETL process to populate the persons generated by Eos

Not all nodes contained in the archetypes could be mapped into
the CDM, since the CDM has no representation for them. This is to
be expected since the CDM is not designed to cover a full EHR. As an
example, the archetype problem_diagnosis contains the following nodes
that could not be mapped: clinical description, body site, structured

https://github.com/SevKohler/Eos
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Table 2
Resulting mapping configurations defined in OMOCL and tested using the Eos tool. The
percentage is calculated counting only published archetypes (17 of 169 as of 4.10.2022)
released in the international CKM [41].
Archetype ID CDM tables

EVALUATION.problem_diagnosis.v1 Condition occurrence
EVALUATION.death_summary.v0 Death
EVALUATION.device_summary.v0 Device Exposure
CLUSTER.device.v1 Device Exposure
CLUSTER.dosage.v1 Drug exposure
ACTION.medication.v1 Drug exposure
INSTRUCTION.medication_order.v2 Drug exposure
OBSERVATION.medication_statement.v0 Drug exposure
EVALUATION.tobacco_smoking_summary.v1 Observation
OBSERVATION.pregnancy_status.v0 Observation
ADMIN_ENTRY.person_data.v0a Person
ACTION.procedure.v1 Procedure occurrence
OBSERVATION.blood_pressure.v2 Measurement
OBSERVATION.body_temperature.v2 Measurement
OBSERVATION.body_weight.v2 Measurement
OBSERVATION.body_mass_index.v2 Measurement
OBSERVATION.clinical_frailty_scale.v1 Measurement
OBSERVATION.height.v2 Measurement
CLUSTER.laboratory_test_analyte.v1 Measurement
OBSERVATION.pulse_oximetry.v1 Measurement
OBSERVATION.pulse.v2 Measurement
OBSERVATION.respiration.v2 Measurement
OBSERVATION.laboratory_test_result.v1 Measurement,

Specimen,
Fact relationship (custom)

CLUSTER.specimen.v1 Specimen

Coverage of archetypes : 10.05%
aThe archetype is not part of the international library, instead it is contained in a German
archetype library [47].

Table 3
Supported CDM and SDE tables by the Eos tool. The CDM version 5.4 has fifteen CDT and SDE tables.
Currently supported by Eos are thirteen (80%).
CDT & SDE tables Supported Type

Person Yes OMOCL or generated
Observation period Yes Generated
Visit occurrence Yes Generated
Visit detail No
Condition occurrence Yes OMOCL
Drug exposure Yes OMOCL
Procedure occurrence Yes OMOCL
Device exposure Yes OMOCL
Measurement Yes OMOCL
Observation Yes OMOCL
Death Yes OMOCL
Note No
Note NLP No
Specimen Yes OMOCL
Fact relationship Partly Custom mapping
Drug era Yes Generated
Dose era Yes Generated
Condition era Yes Generated

Coverage of CDT tables : 80%
Coverage of SDE tables : 100.00%

body site, specific details, course description, severity and diagnostic
certainty. Some of these fields can be stored in a non-specific table
such as OBSERVATION, like body site, structured body site, cause and
severity. The other nodes need to be stored in a completely textual
way in the NOTE table. The use of these tables has several limita-
tions. First, these archetype nodes can contain coded or quantified
information that would be transformed into text fields when using
NOTE, resulting in a loss of information. Secondly, to maintain the
relation between them and the resulting diagnosis stored in CONDI-
TION_OCCURRENCE a FACT_RELATIONSHIP needs to be added. A
FACT_RELATIONSHIP is used to relate fields in two OMOP tables.
Nevertheless, the NOTE, NOTE_NLP and FACT_ RELATIONSHIP are
rarely used by the OHDSI community. Even OHDSI’s official cohort

exploration tool currently lacks support for these tables [51]. Because
of these limitations and since the sample data-sets templates rarely
contain such nodes, the implementation efforts bear no relation to
the value added to the project. Therefore, these tables have not yet
been added to OMOCL. If required, the FACT_RELATIONSHIP can
be mapped using custom converters. As a proof-of-concept and to
faithfully transform one template containing such an archetype node,
a custom converter was added for the FACT_RELATIONSHIP map-
ping of OBSERVATION.laboratory_test_result.v1. Another table that is
currently not supported by Eos and OMOCL is the VISIT_DETAIL.
VISIT_DETAIL is an optional table, that provides additional information
to a VISIT_OCCURRENCE. None of the mapped archetypes required
these optional fields, therefore the table was left unsupported. For the
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Fig. 4. DQD output generated by analyzing data transformed by Eos. The plausibility row measures if data is believable, e.g. does a person_id only exist once. The conformance
checks if data values adhere to specified standards and formats. The completeness validates for the particular presence of variable like the gender of a patient [25].

Table 4
Overview of archetypes, number of rows imported and the average execution time (in
seconds).
Amount of archetypes CDM rows created Execution time(AVG)

231737 423756 ε 914 s

same reasons, a small set of table fields is also not supported, like the
visit_detail to link an entry to the VISIT_DETAIL table. A listing of these
unsupported fields can be found in Appendix C. Clearly, to provide a
full coverage of OMOP, these fields and tables need to be added in the
future.

To assure the correctness of the mappings, several quality assess-
ments were made. First of all, a sample set of transformations for
each archetype was checked manually by inspecting the resulting CDM
tables. In addition, for each archetype mapped, unit tests where devel-
oped that ensure the implemented mappings are deterministic in their
execution and produce the correct CDM tables and fields. Finally, the
official OHDSI Data Quality Dashboard (DQD) [52] was used to validate
the data transformed by Eos and OMOCL. An openEHR repository was
randomly populated with 6649 compositions from sample test data of
the data-sets to provide a diverse sample for the transformation. The
results of the DQD are displayed in Fig. 4. The transformed data passes
98% of all checks. The major amount of fails is a result of missing data
for demographics and visits, contained in the data-sets. The DQD result
file is attached to the resources of the paper.

To evaluate the performance of Eos, an example data set of 116082
compositions from 506 patients was transformed into the CDM. The
Table 4 lists the amount of archetypes, the number of CDM rows created
and the overall average execution time. A detailed table about the
archetypes used and rows created can be found in Appendix D. The
performance measurement was conducted using a PC with an Intel Core
i7 CPU (4 Cores, 4.7 GHz) and 16 GB of RAM. Five repetitions were
made to reliably test the performance of Eos.

The overall execution time took about 15 min (914 s). This means
approximately 126 compositions were loaded from the openEHR plat-
form, transformed and integrated into the CDM database each second.

4. Discussion

The Eos tool and a set of OMOCL mappings were successfully
implemented and tested by integrating several sample and real-world
data-sets. Our results show that a generic standardized ETL process be-
tween openEHR and OMOP can be applied, thus opening up a multitude
of clinical records for research, which have not been available yet in
an automated way. Furthermore, the paper provides a first set of map-
pings, including an open-source tool to execute them. These mappings
cover some of the most used archetypes and lay the foundations for an
openEHR to OMOP mapping library. As a result, a fraction of openEHR
records is now already convertible to OMOP. This includes the COVID-
19 data used by thirty six German university hospitals [48]. Combined
with the tooling provided to the community, this lowers the barriers to
access openEHR records for secondary use in research.

4.1. OpenEHR as a data source for OMOP

In order to transform openEHR records into CDM tables, archetype
mappings were used. This has several advantages. First, an archetype
represents the maximum data-set of a clinical model. This makes it
suitable for all types of transformations into models that aim for a less
exhaustive representation. Users do not edit these archetypes, instead
they abstract what they need in templates. Therefore, an archetype
mapping is generally valid no matter the template it is used in. This
makes the mappings deployable in different locations and contexts
without the need for adjustment. Secondly, these archetypes are from
an internationally used library and are therefore already valid on an
international scale. As a result, the mappings enable a ‘‘plug-and-play’’
solution for openEHR on an international scale.

To further improve this process, clinical modelers could already
annotate archetypes with OMOP CDM mappings. These annotations
would help to create mappings and may leverage an automatic gen-
eration of OMOCL files. Mapping configurations could also be included
as part of the archetype libraries. This would make mappings better
accessible for use and review, hereby improving quality and making use
of already established community modeling workflows. To integrate the
openEHR terminologies into OMOP, a vocabulary could be introduced.

However, the OMOP CDM has only a limited set of static tables
for observational research. OpenEHR, on the other hand, covers many
healthcare domains and has a flexible model that supports semantically
rich data. As a result, some of the openEHR data cannot be represented
in OMOP. Archetypes are a maximum data-set approach and some of
the nodes contained in an archetype have no specific mapping to a
CDM table. Depending on the archetype node, non-specific tables like
Observation or the completely textual NOTE could be used for that.
NOTES represent unstructured information, storing coded or quantified
data with them results in a loss of semantics. The resulting tables of
a transformation then need to be linked with each other using the
FACT_RELATIONSHIP. The NOTE, NOTE_NLP and FACT_ RELATION-
SHIP are rarely used by the OHDSI community and are missing tool
support [51]. When analyzing the CDM, the researcher is required to
know about this and query the tables accordingly, which may not even
be possible due to lacking support of the tool. Given the amount and
complexity of data, such a distribution of related data leaves room for
misinterpretations. On the other hand, openEHR has a standardized
field, which can be filtered when defining a cohort for example. Missing
health data bears the risk that it can reduce the study power and may
even lead to a false conclusion, e.g., in a clinical trial [4]. It is to
be expected that new tables and fields will be added in the future to
OMOP. Eos and OMOCL are also required to adapt to these changes.

Another limitation is the unspecific way imposed by openEHR for
its demographic data. We provide different solutions for this problem.
Nevertheless, if demographic data is stored externally, users still have
to implement a custom ETL process, if required. Tooling could be
provided as part of a future solution to better support this process
— for example an endpoint to input person data. On the other hand,
keeping the demographic data external also has its advantages in terms
of privacy [53] and eases the way data can be provided for research in
conformance with privacy standards.
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4.2. Eos and OMOCL

The OMOCL managed to represent the mappings in a human and
machine readable format. The declarative language provided the means
to define all but one mapping without the need of programming and
scripting languages. The resulting mappings and language will be free
to use and open source. We hope that this will initiate a collective
effort to cover all missing archetypes. Ultimately, this would make all
openEHR records accessible for secondary use without the need for
custom ETL processes. In addition, this free access also enables users to
define their own solutions to execute the OMOCL files. OMOCL could
also be extended to support other CIM like FHIR. Nevertheless, this
is the first version of OMOCL, therefore it is to be expected that the
language will require updates and fixes.

With Eos we implemented a tool to execute mappings based on
OMOCL files successfully. This was tested using sample and real-world
data. The tool offers different API endpoints and configuration param-
eters, while being open source for the community. In the current state,
Eos was only tested within a fixed environment. Using the DQD, the
quality of the transformed CDM data was analyzed. The data passed
98% of the DQD tests, which is acceptable. Such a validation also
strongly depends on the quality of the input data. Eos and OMOCL rely
on correct and complete input data in order to manifest conform CDM
tables. The overall performance of the import of data with Eos shows
encouraging results, with 126 compositions imported per second. Given
the limited hardware resources of our test setup, the approximately
15 min taken to populate the CDM with 423756 rows seems acceptable.
To improve its stability and correctness, further testing is required.

The OMOCL mappings currently cover 10.5% of the published
archetypes in the CjabreKM. While this number appears to be small,
these are some of the most frequently used archetypes that also cover
most of the data required for patient summaries. The goal of this
work was to define an approach to integrate both standards. Eos and
OMOCL enable such an integration. OpenEHR is a community driven
standard. With the tooling being provided, we expect that the rest of
the archetypes will be mapped as part of a community effort in the near
future.

The scope of this study was to make clinical data accessible for
secondary use. As a result, a transformation back from OMOP to
openEHR was not part of the design and implementation of the tools.
Another limitation of Eos and OMOCL is the missing support for the
CDT tables: VISIT_DETAIL, NOTE, NOTE_NLP and a declarative method
to define FACT_RELATIONSHIP. Nevertheless, all but VISIT_DETAIL are
also not supported by OHDSI’s official cohort exploration tool [51].
Meanwhile, VISIT_DETAIL is used as an alternative mechanism to de-
fine a VISIT_OCCURRENCE. In addition, we are also missing support
for six CDT fields which we did not identify as crucial. Therefore, we
decided that these fields can be neglected for an initial release. We plan
to add support for all CDM fields and tables in the future.

4.3. Comparison to related work

A related work to make openEHR records accessible for secondary
use is the approach by Haarbrandt et al. [31], who developed an au-
tomated approach to populate an i2b2 date warehouse from openEHR
records. The results showed that a transformation of openEHR records
into i2b2 is feasible. Similar to OMOP, i2b2 has a less expressive
data model than openEHR [31]. Therefore, a transformation always
comes with a loss of semantics. When compared to OMOP, i2b2 has
no standardized and harmonized terminologies as OMOP does with its
vocabularies. Furthermore, i2b2 has no specific representation for mea-
surements, device exposures and drug exposures like OMOP does. As a
result, a transformation to OMOP has the advantage of harmonizing
terminologies and sustaining more of the initial semantics. Combined,
the approaches show that openEHR can be readily transformed into the

two major standards currently employed for secondary use of clinical
data. OpenEHR is thus transformable into semantically less rich models.

Another approach to make CIM accessible for secondary use are the
ones made for integrating FHIR data into the OMOP CDM [29,33]. The
OMOP-on-FHIR [33] ETL tool is open source and allows for a bidi-
rectional transformation of FHIR and OMOP data. On the other hand,
Lenert et al. [29] successfully transformed FHIR-data into an OMOP
CDM database. Every approach made with FHIR has the limitation
that mappings need to be altered if different profiles are used. FHIR
provides a set of generic resources that are specialized by users for the
specific use cases, using so called profiles. As an example, the GECCO
data set [46] representation in FHIR contains 66 of such profiles [54].
Each of these profiles can introduce and alter existing fields of the
resources [55]. As a result, for each profile, it may be required to
reconfigure the mappings accordingly. Therefore, it is not possible to
provide a generally valid ETL tool for FHIR, if profiles are used that
alter the rudimentary resources. OpenEHR on the other hand has a
maximum data set approach using archetypes. Once mapped, these
mappings are generally valid.

4.4. OpenEHR for research

In the future, it may be viable to directly use openEHR as a data
model for research, and in doing so, enable more data to be repre-
sented and therefore make it accessible for secondary use. OpenEHR
is especially suited for this since it is FAIR enabling [56] and General
Data Protection Regulation (GDPR) [53] compliant by design, has
international models, a maximum data-set approach and a native query
language. Furthermore, for institutions that already use openEHR, this
would be more efficient and resource-saving than integrating it into,
e.g., OMOP. Other institutions would be required to write ETL processes
in both cases. In case of openEHR, these institutions would also set
the foundation for a homogeneous EHR, therewith lowering the barrier
for the standardization of the entire institution and closing the gap
between the clinical and research domains. In addition, calculations
could be shared and executed locally as it is done with OMOP. As
an example, the COVID-19 Research Network of University Medicine
Germany [48] uses openEHR for its central COVID-19 data platform.
The openEHR representation of the GECCO used for this COVID-19
data, contains only international archetypes, except for the archetypes
for patient admission, study participation and symptom signs. As a
consequence, every calculation made on these archetypes is shareable
with other openEHR COVID-19 projects in the very same manner as
it is with OMOP, but with no need for initial ETL processes and with
more semantically rich data. Nevertheless, openEHR platforms focus
on clinical use and therefore more on transactional than analytical
purposes. Compared to OMOP, openEHR specifically lacks tooling for
research, this needs to be added in the future to make it more viable
for global projects.

In theory, this could also be done with other CIM, but often requires
more intense work. As an example, the other major CIM, FHIR, has
no large internationally harmonized library of clinical models. Further-
more, FHIR does not aim for a maximum data-set approach. This bears
the risk that source systems have different data needs for the same
clinical model. In order to harmonize these, either the models have to
be standardized or an ETL process has to be established between FHIR
systems. In openEHR this can also be the case with archetypes but is
less likely due to its internationally shared archetypes. As an example,
the openEHR representation of the GECCO uses three non interna-
tional archetypes. Meanwhile the FHIR representation consists mainly
of models that were defined specifically for it or reuses some from other
national projects. This shows that FHIR requires additional modeling
efforts for the same data set. If data is persisted in FHIR, the standard
currently offers no standardized operation to permanently delete all
patient data, since the version history of a resource is not removed [57].
Therefore, FHIR data repositories are not per se GDPR compliant and
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require the implementation of a permanent delete. As a consequence,
the current version of FHIR requires intensive resources compared to
openEHR. However, FHIR is a health care data exchange standard [55]
and not designed for persistence etc., as stated by the documentation:
‘‘In principle, resources are designed for exchange between systems,
rather than as a database storage format’’. [55]. An out of context use
also bears the risk of creating a silver bullet thinking [58].

5. Conclusion

We successfully developed a comprehensive approach to integrate
openEHR records into the OMOP CDM. With the definition of the
OMOCL DSL we were able to represent a first set of archetypes-to-
CDM table mappings that cover 10.05% of the internationally published
archetypes. This demonstrated that the maximum data-set approach of
openEHR provides the possibility for a transformation into less expres-
sive models with generic mappings that are valid on an international
scale. The implemented Eos tool used these OMOCL-files to successfully
automatize the ETL from real-world and sample EHRs into the OMOP
CDM. To the authors’ knowledge, this is the first implementation of
a generic openEHR to OMOP transformation and thus represents a

significant step towards achieving interoperability between the clinical
and the research data domains.

However, our approach showed that such a transformation into less
expressive data models comes with the loss of information. We suggest
that future research projects should export their data into a model
that can represent clinical data without information loss. OpenEHR is
especially suited for that, providing, apart from its maximum data-set
models, a FAIR enabling and GDPR compliant design. Such an adapta-
tion of openEHR would close the gap between the clinical and research
domain. Hereby, more semantic-rich data would be made more readily
accessible to match the ever-growing complexity of modern and future
research.
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See Fig. A.5.

Appendix B

See Figs. B.6–B.29.
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Fig. B.9. OMOCL file for the international medication archetype.

Fig. B.10. OMOCL file for the international medication order archetype.
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Fig. B.11. OMOCL file for the international medication statement archetype.

Fig. B.12. OMOCL file for the international tobacco smoking summary archetype.
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Fig. B.13. OMOCL file for the international pregnancy status archetype.

Fig. B.14. OMOCL file for the international person data archetype.

Fig. B.15. OMOCL file for the international procedure archetype.
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Fig. B.16. OMOCL file for the international blood pressure archetype.
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Fig. B.17. OMOCL file for the international body temperature archetype.

Fig. B.18. OMOCL file for the international body weight archetype.
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Fig. B.19. OMOCL file for the international body mass index archetype.

Fig. B.20. OMOCL file for the international clinical frailty scale archetype.
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Fig. B.21. OMOCL file for the international height archetype.

Fig. B.22. OMOCL file for the international pulse archetype.
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Fig. B.23. OMOCL file for the international pulse oximetry archetype.

Fig. B.24. OMOCL file for the international respiration archetype.
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Fig. B.25. OMOCL file for the international laboratory test result archetype.

Fig. B.26. OMOCL file for the international device archetype.

Appendix C

See Table C.5.

Fig. B.27. OMOCL file for the international dosage archetype.

Appendix D

See Table D.6.

Appendix E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jbi.2023.104437.
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Fig. B.28. OMOCL file for the international laboratory test analyte archetype.

Fig. B.29. OMOCL file for the international specimen archetype.
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Table C.5
Currently unsupported CDM version 5.4. fields by OMOCL and Eos.
CDT tables Unsupported fields

Condition occurrence provider_id ,
visit_detail_id

Death –

Device Exposure provider_id,
visit_detail_id

Drug exposure provider_id,
visit_detail_id

Person provider_id,
care_site_id,
location_id

Procedure occurrence provider_id,
visit_detail_id

Measurement provider_id,
visit_detail_id,
measurement_event_id,
meas_event_field_concept_id

Observation provider_id,
visit_detail_id,
observation_event_id,
obs_event_field_concept_id

Specimen –

Table D.6
Amount and type of archetypes and CDM entities transformed for the performance
tests. Clusters archetypes were not counted.
Archetype ID Amount

EVALUATION.problem_diagnosis.v1 39733
ACTION.medication.v1 20791
INSTRUCTION.medication_order.v2 19097
OBSERVATION.medication_statement.v0 14151
EVALUATION.tobacco_smoking_summary.v1 16219
OBSERVATION.pregnancy_status.v0 10575
OBSERVATION.blood_pressure.v2 6543
OBSERVATION.body_weight.v2 3843
OBSERVATION.body_mass_index.v2 3557
OBSERVATION.clinical_frailty_scale.v1 8069
OBSERVATION.height.v2 15557
OBSERVATION.pulse_oximetry.v1 29749
OBSERVATION.pulse.v2 5357
OBSERVATION.respiration.v2 2351
OBSERVATION.laboratory_test_result.v1 36145

CDM table Amount of rows
Visit occurrence 115876
Condition occurrence 19867
Drug exposure 28961
Measurement 133815
Observation 4937
Specimen 1787
Fact relationship 3574
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